Chapter 08 Dynamic Routing - OSPF

- **OSPF** Message Encapsulation
- OSPF packet type
 There exist 5 types
- OSPF packet header

Contains - Router ID and area ID and Type code for OSPF packet type

IP packet header

Contains - Source IP address, Destination IP address, & Protocol field set to 89

Data Link Frame IP Packet OSPF Packet OSPF Packet Type-Specific Data Header Header Header

Encapsulated OSPF Message

Data Link Frame (Ethernet Fields shown here) MAC Source Address = Address of sending interface MAC Destination Address = Multicast: 01-00-5E-00-00-05 or 01-00-5E-00-00-06

IP Packet

IP Source Address = Address of sending interface IP Destination Address = Multicast: 224.0.0.5 or 224.0.0.6 Protocol field = 89 for OSPF

OSPF Packet Header Type Code for OSPF Packet Type Router ID and Area ID

OSPF Packet Types 0x01 Hello 0x02 Database Description (DD) 0x03 Link State Request 0x04 Link State Update 0x05 Link State Acknowledgment

OSPF Packet Types

Туре	Packet Name	Description
1	Hello	Discovers neighbors and builds adjacencies between them
2	Database Description (DBD)	Checks for database synchronization between routers
3	Link-State Request (LSR)	Requests specific link-state records from router to router
4	Link-State Update (LSU)	Sends specifically requested link-state records
5	Link-State Acknowledgement (LSAck)	Acknowledges the other packet types

Hello Protocol

- OSPF Hello Packet
 - Purpose of Hello Packet
 - Discover OSPF neighbors & establish adjacencies
 - Advertise guidelines on which routers must agree to become neighbors
 - Used by multi-access networks to elect a Designated Router and a
 Backup Designated Router

Hello Packets continued
 Contents of a Hello Packet
 router ID of transmitting router

OSPF Hello Intervals

-Usually multicast (224.0.0.5)

-Sent every 30 seconds for NBMA segments and every 10 on multi-access segments

- Hello protocol packets contain information that is used in electing
 - Designated Router (DR)
 - DR is responsible for updating all other OSPF routers
 - Backup Designated Router (BDR)
 - This router takes over DR's responsibilities if DR fails

OSPF Link-state Updates

- Purpose of a Link State Update (LSU)
 Used to deliver link state advertisements
- Purpose of a Link State Advertisement (LSA)
 - Contains information about neighbors & path costs

Туре	Packet Name	Description						
1	Hello	Discovers neighbors and builds adjacencies between them						
2	DBD	Checks for data	base synchronization between router)				
3	LSR	Requests specif	ic link-state records from router to router					
4	LSU	Sends specifical	ly requested link-state records	—				
5	LSAck	Acknowledges th						
The acronyms LSA and		LSA Type	Description					
interchange	eably.	1	h ghbors and builds adjacencies between them tabase synchronization between router cific link-state records from router to router cally requested link-state records the other packet types Description Router LSAs Network LSAs Summary LSAs Autonomous System Extrenal LSAs Multicast OSPF LSAs Defined for Not-So-Stubby Areas External Attributes LSA for Border Gatway Protocol(BGP) Opaque LSAs					
		2	Network LSAs					
An LSU contains one or		3 or 4						
	-	5	Autonomous System Extrenal LSAs					
A A A A A A A A A A	•	6	Multicast OSPF LSAs					
SAs contain route nformation for destination networks.		7	Defined for Not-So-Stubby Areas					
		8	External Attributes LSA for Border Gatway Protocol(BGP)					
SA specifi	ics are	9,10,11	Opaque LSAs					
discussed i	in CCNP.							

LSUs Contain Link-State Advertisements (LSAs)

- **OSPF** Algorithm
- OSPF routers build & maintain link-state database containing LSA received from other routers
 - Information found in database is utilized upon execution of Dijkstra SPF algorithm
 - -SPF algorithm used to create SPF tree
 - -SPF tree used to populate routing table

Administrative Distance

Default Administrative Distance for OSPF is 110

Default Administrative Distances

Route Source	Administrative Distance			
Connected	0			
Static	1			
EIGRP summary route	5			
External BGP	20			
Internal EIGRP	90			
IGRP	100			
OSPF	110			
IS-IS	115			
RIP	120			
External EIGRP	170			
Internal BGP	200			

- OSPF Authentication
 - Purpose is to encrypt & authenticate routing information
 - This is an interface specific configuration
 - Routers will only accept routing information from other routers that have been configured with the same password or authentication information

The router ospf command

- To enable OSPF on a router use the following command
 - R1(config)#router ospf process-id
 - Process id
 - A locally significant number between 1 and 65535
 -this means it does not have to match other OSPF routers

OSPF network command

-Requires entering: network address

wildcard mask - the inverse of the subnet mask

area-id - area-id refers to the OSPF area. OSPF area is a group of routers that share link state information

-Example: Router(config-router)#network network-address wildcard-ask area area-id

```
R1 (config) #router ospf 1
R1 (config-router) #network 172.16.1.16 0.0.0.15 area 0
R1 (config-router) #network 192.168.10.0 0.0.0.3 area 0
R1 (config-router) #network 192.168.10.4 0.0.0.3 area 0
```

```
R2(config) #router ospf 1
R2(config-router) #network 10.10.10.0 0.0.0.255 area 0
R2(config-router) #network 192.168.10.0 0.0.0.3 area 0
R2(config-router) #network 192.168.10.8 0.0.0.3 area 0
```

- Router ID
 - This is an IP address used to identify a router
 - 3 criteria for deriving the router ID
 - Use IP address configured with OSPF router-id command
 - Takes precedence over loopback and physical interface addresses
 - If router-id command not used then router chooses highest IP address of any loopback interfaces
 - If no loopback interfaces are configured then the highest IP address on any active interface is used

OSPF Router ID

Commands used to verify current router ID

- Show ip protocols
- Show ip ospf
- Show ip ospf interface

OSPF Router ID

R1(config)#interface loopback 0 R1(config-if)#ip add 10.1.1.1 255.255.255.255

Router ID & Loopback addresses

- Highest loopback address will be used as router ID if router-id command isn't used

- Advantage of using loopback address

the loopback interface cannot fail \rightarrow OSPF stability

The OSPF router-id command

- Introduced in IOS 12.0
- Command syntax
 - Router(config)#router ospf process-id
 - Router(config-router)#router-id ip-address

Modifying the Router ID

- After that you should use the command Router#clear ip ospf process

Verifying OSPF

 Use the show ip ospf command to verify & troubleshoot OSPF networks

Command will display the following:

Neighbor adjacency

-No adjacency indicated by -

Neighboring router's Router ID is not displayed

A state of **full** is not displayed

-Consequence of no adjacency-

No link state information exchanged

Inaccurate SPF trees & routing tables

R1#show ip ospf	neigh	bor				
Neighbor ID	Pri	State	-	Dead Time	Address	Interface
10.3.3.3	1	FULL/		00:00:30	192.168.10.6	Serial0/0/1
10.2.2.2	1	FULL/		00:00:33	192.168.10.2	Serial0/0/0

Verifying OSPF - Additional Commands

Command	Description				
Show ip protocols	Displays OSPF process ID, router ID, networks router is advertising & administrative distance				
Show ip ospf	Displays OSPF process ID, router ID, OSPF area information & the last time SPF algorithm calculated				
Show ip ospf interface	Displays hello interval and dead interval				

Examining the routing table

Use the show ip route command to display the routing table

- An "O' at the beginning of a route indicates that the router source is OSPF

- Note OSPF does not automatically summarize at major network boundaries

```
R1#show ip route
Codes: <some code output omitted>
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
Gateway of last resort is not set
     192.168.10.0/30 is subnetted, 3 subnets
        192.168.10.0 is directly connected, Serial0/0/0
С
       192.168.10.4 is directly connected, Serial0/0/1
С
        192.168.10.8 [110/128] via 192.168.10.2, 14:27:57, Serial0/0/0
0
     172.16.0.0/16 is variably subnetted, 2 subnets, 2 masks
        172.16.1.32/29 [110/65] via 192.168.10.6, 14:27:57, Serial0/0/1
0
        172.16.1.16/28 is directly connected, FastEthernet0/0
С
     10.0.0.0/8 is variably subnetted, 2 subnets, 2 masks
0
        10.10.10.0/24 [110/65] via 192.168.10.2, 14:27:57, Serial0/0/0
С
        10.1.1.1/32 is directly connected, Loopback0
```

OSPF Metric

OSPF uses cost as the metric for determining the best route

- The best route will have the lowest cost
- Cost is based on bandwidth of an interface
 - Cost is calculated using the formula

10⁸ / bandwidth

- Reference bandwidth
 - defaults to 100Mbps
 - can be modified using

Interface Type	10 ⁸ /bps = Cost
Fast Ethernet and faster	10 ⁸ /100,000,000 bps = 1
Ethernet	10 ⁸ /10,000,000 bps = 10
E1	10 ⁸ /2,048,000 bps = 48
T1	10 ⁸ /1,544,000 bps = 64
128 kbps	10 ⁸ /128,000 bps = 781
64 kbps	10 ⁸ /64,000 bps = 1562
56 kbps	10 ⁸ /56,000 bps = 1785

Router(config-router)#auto-cost reference-bandwidth

OSPF Metric

Cost of an OSPF route

Is the accumulated value from one router to the next OSPF Accumulates Cost

- Solution to LSA flooding issue is the use of
 - Designated router (DR)
 - Backup designated router (BDR)
 - DRothers
- DR & BDR selection
 - Routers are elected to send & receive LSA
- Sending & Receiving LSA
 - DRothers send LSAs via multicast 224.0.0.6 to DR & BDR
 - DR forward LSA via multicast address 224.0.0.5 to all other routers

Adjacencies are formed with DR and BDR only. LSAs are sent to the DR. BDR listens.

DR sends out any LSAs to all other routers.

DR/BDR Election Process

 DR/BDR elections DO NOT occur in point to point networks
 Point-to-Point Three Router Topology

DR/BDR elections will take place on multiaccess networks only as shown below

Multiaccess Three Router Topology

Lo0 192.168.31.22/32

Notice that routers are now communicating via LAN interfaces.

- Criteria for getting elected DR/BDR
 - 1. DR: Router with the highest OSPF interface priority.
 - 2. **BDR**: Router with the second highest OSPF interface priority.
 - 3. If OSPF interface priorities are equal, the highest router ID is used to break the tie.

RouterA# show ip	ospf	neighbor						
Neighbor ID	Pri	State	Dea	d Time	Ad	dress	In	terface
192.168.31.33	1	FULL/DR	00:	00:39	19	2.168.1.3	Fa	stEthernet0/0
192.168.31.22	1	FULL/BDR	BDR 00:00:36 1		19	192.168.1.2 Fa		stEthernet0/0
RouterB# show ip	ospf	neighbor						
Neighbor ID	Pri	State		Dead Time	е	Address		Interface
192,168,31,33	1	FULL/DR		00:00:34	-	192,168,1	.3	FastEthernet0/0
192.168.31.11	1	FULL/DROTHE	ER	00:00:38		192.168.1	.1	FastEthernet0/0
RouterC#show ip ospf neighbor								
Neighbor ID	Pri	State		Dead Ti	ne	Address		Interface
192.168.31.22	1	FULL/BDR		00:00:3	5	192.168.1	.2	FastEthernet0
192.168.31.11	1	FULL/DROTHE	ER	00:00:3	2	192.168.1	.1	FastEthernet0
		al a facult value						

Lo0 192,168,31,22

Fa0/0

Next highest router ID

Lo0 192.168.31.11/32

BDR

192.168.1.2./24

Highest router ID

Lo0 192.168.31.33/32

More OSPF Configuration

Redistributing an OSPF Default Route

- Topology includes a link to ISP
 - Router connected to ISP
 - Called an autonomous system border router
 - Used to propagate a default route
 - Example of static default route

R1(config)#ip route 0.0.0.0 0.0.0.0 loopback 1

- Requires the use of the default-information originate command
- Example of default-information originate command R1(config-router)#default-information originate

